DeepSeek 今天发布了其 DeepSeek-V3 大语言模型的改进版本,并采用了新的开源许可证。
软件开发者兼博主 Simon Willison 率先报道了这一更新。DeepSeek 本身并未发布公告。新模型的 Readme 文件 (代码仓库中通常包含说明注释的组件) 目前仍是空白的。
DeepSeek-V3 是一个于去年 12 月首次亮相的开源大语言模型。它是 DeepSeek-R1 的基础,而 DeepSeek-R1 是一个推理模型,今年早些时候使这家中国人工智能实验室声名鹊起。DeepSeek-V3 是一个通用模型,并非专门针对推理进行优化,但它可以解决一些数学问题并生成代码。
在此之前,该大语言模型是在自定义开源许可证下发布的。DeepSeek 今天推出的新版本改用了广泛使用的 MIT 许可证。开发者几乎可以不受任何限制地在商业项目中使用和修改更新后的模型。
更值得注意的是,新版 DeepSeek-V3 似乎比原版更强大且硬件效率更高。
大多数最先进的大语言模型只能在数据中心的图形卡上运行。Apple Inc. 机器学习研究组的研究科学家 Awni Hannun 在 Mac Studio 上运行了新版 DeepSeek-V3。该模型能够以每秒约 20 个 token 的速率生成输出。
这台 Mac Studio 采用了售价 9,499 美元的高端配置。在该机器上部署 DeepSeek-V3 需要应用 4 位量化。这是一种大语言模型优化技术,通过牺牲一些输出精度来换取更低的内存使用和延迟。
根据 VentureBeat 发现的一条 X 平台帖子,新版 DeepSeek-V3 在编程方面比原版更出色。该帖子包含了一个评估模型生成 Python 和 Bash 代码能力的基准测试。新版本获得了约 60% 的得分,比原版 DeepSeek-V3 高出几个百分点。
该模型仍落后于 DeepSeek-R1 (该 AI 实验室的旗舰推理优化大语言模型)。最新的 DeepSeek-V3 版本的得分也低于另一个推理优化模型 Qwen-32B。
尽管 DeepSeek-V3 拥有 6,710 亿个参数,但在回答提示时只激活约 370 亿个参数。这种设计使模型比传统的激活所有参数的大语言模型需要更少的基础设施。据 DeepSeek 称,该大语言模型的效率也高于 DeepSeek-R1,这降低了推理成本。
原版 DeepSeek-V3 的训练数据集包含 14.8 万亿个 token。训练过程使用了约 280 万个显卡小时,显著低于前沿大语言模型通常所需的时间。为了提高模型的输出质量,DeepSeek 工程师使用来自 DeepSeek-R1 的提示响应对其进行了微调。
好文章,需要你的鼓励
DeepResearchGym是一个创新的开源评估框架,专为深度研究系统设计,旨在解决当前依赖商业搜索API带来的透明度和可重复性挑战。该系统由卡内基梅隆大学研究团队开发,结合了基于ClueWeb22和FineWeb大型网络语料库的可重复搜索API与严格的评估协议。实验表明,使用DeepResearchGym的系统性能与使用商业API相当,且在评估指标间保持一致性。人类评估进一步证实了自动评估协议与人类偏好的一致性,验证了该框架评估深度研究系统的有效性。
这项研究介绍了FinTagging,首个面向大型语言模型的全面财务信息提取与结构化基准测试。不同于传统方法,它将XBRL标记分解为数值识别和概念链接两个子任务,能同时处理文本和表格数据。在零样本测试中,DeepSeek-V3和GPT-4o表现最佳,但在细粒度概念对齐方面仍面临挑战,揭示了当前大语言模型在自动化XBRL标记领域的局限性,为金融AI发展提供了新方向。
这项研究介绍了SweEval,一个新型基准测试,用于评估大型语言模型在企业环境中处理脏话的能力。研究团队从Oracle AI等多家机构的专家创建了一个包含八种语言的测试集,模拟不同语调和上下文的真实场景。实验结果显示,LLM在英语中较少使用脏话,但在印地语等低资源语言中更易受影响。研究还发现较大模型通常表现更好,且多语言模型如Llama系列在处理不当提示方面优于其他模型。这项工作对企业采用AI技术时的安全考量提供了重要参考。
这项研究提出了"VeriFree"——一种不需要验证器的方法,可以增强大型语言模型(LLM)的通用推理能力。传统方法如DeepSeek-R1-Zero需要验证答案正确性,限制了其在数学和编程以外领域的应用。VeriFree巧妙地计算正确答案在模型生成的推理过程后出现的概率,作为评估和训练信号。实验表明,这种方法不仅能匹配甚至超越基于验证器的方法,还大幅降低了计算资源需求,同时消除了"奖励黑客"问题。这一突破将有助于开发出在化学、医疗、法律等广泛领域具有更强推理能力的AI系统。