Perplexity 今天推出 Deep Research 工具,彻底打破了 AI 市场的现状。这款工具能在几分钟内生成全面的研究报告,以远低于企业级常规成本的价格,向用户开放先进的 AI 功能。
Perplexity CEO Aravind Srinivas 在 X 平台上发文表示:"感谢开源!我们将继续提高速度并降低成本。知识应该是普遍可及且有用的,不应该被隐藏在昂贵的订阅计划背后,那只会让企业受益,而不符合人类的利益!"
Perplexity Deep Research 重新定义 AI 定价 — 企业级 AI 能否生存?
这次发布揭示了 AI 定价的一个残酷事实:昂贵的企业订阅可能并非必要。虽然 Anthropic 和 OpenAI 每月收取数千美元的服务费,但 Perplexity 为所有用户每天提供 5 次免费查询。专业版用户每月支付 20 美元即可获得每天 500 次查询额度和更快的处理速度 — 这一价格标准可能会迫使大型 AI 公司解释为什么他们的服务要贵上 100 倍。
尽管整体 IT 预算增长不到 2%,但预计企业在 AI 方面的支出将在 2025 年增长 5.7%。一些企业计划将 AI 支出增加 10% 或更多,平均增加 340 万美元用于 AI 计划。随着 Perplexity 以消费级价格提供类似功能,这些投资现在看来值得商榷。
在典型查询中,Perplexity 的 Deep Research 工具会执行 8 次搜索并参考 42 个来源,在不到 3 分钟内生成一份 1,300 字的报告。
Perplexity Deep Research 如何超越 Google 和 OpenAI
Deep Research 的技术成就表明,昂贵的 AI 服务可能是定价过高而非性能更优。该系统在 SimpleQA 基准测试中获得 93.9% 的准确率,在"人类最后考试"中达到 20.5%,超过了 Google 的 Gemini Thinking 和其他领先模型。
OpenAI 的 Deep Research 在同样的考试中以 26.6% 的成绩领先,但 OpenAI 对该服务收取 200% 的费用。Perplexity 能够以消费级价格提供接近企业级的性能,这引发了人们对 AI 行业定价结构的重要质疑。
为什么 Perplexity 的平价 AI 正在打破先进技术的准入门槛
影响已经超出定价范畴。企业级 AI 在资金充足的公司和其他群体之间造成了数字鸿沟。无法负担数千美元订阅费用的小企业、研究人员和专业人士实际上被排除在先进 AI 功能之外。
Perplexity 的方案改变了这种局面。该工具可以处理从财务分析、市场研究到技术文档和医疗保健洞察等复杂任务。用户可以将研究结果导出为 PDF 或通过 Perplexity 的平台分享,有望替代昂贵的研究订阅和专业工具。
该公司计划将 Deep Research 扩展到 iOS、Android 和 Mac 平台,这可能会加快那些以前认为 AI 工具遥不可及的用户的采用速度。这种广泛的访问可能比任何技术突破都更有价值 — 最终让最需要的用户能够使用先进的 AI 功能。
对于技术决策者来说,这种转变值得关注。为 AI 服务支付高价的公司应该审视这些投资是否带来了超出 Perplexity 现有低价服务的价值。答案可能会重塑组织在 2025 年及以后如何看待 AI 支出。
当 Perplexity 的竞争对手争相为其高价服务辩护时,已有数千用户正在测试 Deep Research 的功能。他们的判断可能比任何基准测试都更重要:在 AI 的新现实中,最好的技术不是最贵的 — 而是人们真正能用得起的。
好文章,需要你的鼓励
这项研究介绍了SweEval,一个新型基准测试,用于评估大型语言模型在企业环境中处理脏话的能力。研究团队从Oracle AI等多家机构的专家创建了一个包含八种语言的测试集,模拟不同语调和上下文的真实场景。实验结果显示,LLM在英语中较少使用脏话,但在印地语等低资源语言中更易受影响。研究还发现较大模型通常表现更好,且多语言模型如Llama系列在处理不当提示方面优于其他模型。这项工作对企业采用AI技术时的安全考量提供了重要参考。
这项研究提出了"VeriFree"——一种不需要验证器的方法,可以增强大型语言模型(LLM)的通用推理能力。传统方法如DeepSeek-R1-Zero需要验证答案正确性,限制了其在数学和编程以外领域的应用。VeriFree巧妙地计算正确答案在模型生成的推理过程后出现的概率,作为评估和训练信号。实验表明,这种方法不仅能匹配甚至超越基于验证器的方法,还大幅降低了计算资源需求,同时消除了"奖励黑客"问题。这一突破将有助于开发出在化学、医疗、法律等广泛领域具有更强推理能力的AI系统。
这项研究提出了"思想家"(Thinker)任务,一种受人类双重加工理论启发的新型AI训练方法。研究者将问答过程分解为四个阶段:快速思考(严格预算下给出初步答案)、验证(评估初步答案)、慢速思考(深入分析修正错误)和总结(提炼关键步骤)。实验表明,该方法使Qwen2.5-1.5B模型的准确率从24.9%提升至27.9%,DeepSeek-R1-Qwen-1.5B模型从45.9%提升至49.8%。显著的是,仅使用快速思考模式就能达到26.8%的准确率,且消耗更少计算资源,证明了直觉与深度推理作为互补系统的培养价值。
这项由ELLIS研究所和马克斯·普朗克智能系统研究所的科学家进行的研究,揭示了大语言模型安全测试的根本规律:越狱攻击成功率由攻击者与目标模型间的能力差距决定。通过评估500多个攻击者-目标组合,研究团队发现:更强的模型是更好的攻击者;当目标能力超过攻击者时攻击成功率急剧下降;社会科学能力比STEM知识更能预测攻击成功。基于这些发现,研究者建立了预测模型,表明随着AI进步,人类红队测试可能逐渐失效,提示需要发展自动化安全评估方法及更全面地评估模型的说服和操纵能力。